PAGE
3

[image: image1.png]
Duet Module Interface Specification

for an

Sonance AMP 875D

TABLE OF CONTENTS

3Introduction

3Overview

4Implementation

5Port Mapping

6Channels

6Levels

7Command Control

8Command Feedback

8Device Notes

8Programming Notes

9Adding Functions to Modules

9Commands to the device

LIST OF TABLES

5Table 1 - Port Mapping

6Table 2 - Virtual Device Channel Events

6Table 3 - Virtual Device Level Events

7Table 4 – Send Command Definitions

8Table 5 - Command Feedback Definitions

	Date
	Initials
	Comments

	06-25-06
	SP
	Initial release

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

Introduction

This is a reference manual to describe the interface provided between an AMX NetLinx system and a Sonance AMP 875D. The Sonance AMP 875D supports an RS-232 serial protocol. The required communication settings are a baud rate of 9600, 8 data bits, 1 stop bit, no parity, and handshaking off. The cable for this device is FG#10-752. The wiring diagram for this cable is as follows:

AMX NXI
AMX NI

Sonance AMP 875D (Male DB9)

(Gnd) 1
(Gnd) 5 __________
(Gnd) 5

(Rx) 2
(Rx) 2 __________
(Tx) 2

(Tx) 3
(Tx) 3 __________
(Rx) 3

This module was written using Café Duet firmware version 3.12.332, NetLinx Studio version 2.4 build 2.4.90.126, Café Duet application platform and runtime version 1.7.156, and Café Duet application plug-in version 1.7.78.
Overview

The COMM module translates between the standard interface described below and the amplifier serial protocol. It parses the buffer for responses from the amplifier, sends strings to control the amplifier, and receives commands from the UI module or telnet sessions.

A User Interface (UI) module is also provided. This module uses the standard interface described below and parses the command responses for feedback.

The following diagram gives a graphical view of the interface between the interface code and the Duet module.

Some functionality in the device interface may not be implemented in the API interface. In cases where device functions are desired but not API-supported, the PASSTHRU command may be used to send any and all device-protocol commands to the device. See the PASSTHRU command and the Adding Functions to Modules section for more information.

A sample UI module and a touch panel file are provided in the module package. These are not intended to cover every possible application, but can be expanded as needed by a dealer to meet the requirements of a particular installation.

Implementation

To interface to the AMX Sonance AMP 875D module, the programmer must perform the following steps:

1. Define the device ID for the amplifier that will be controlled.

2. Define the virtual device ID that the Sonance AMP 875D COMM module will use to communicate with the main program and User Interface. Duet virtual devices use device numbers 41000 - 42000.

3. If a touch panel interface is desired, a touch panel file Sonance AMP875D.TP4 and module (Sonance AMP875D Main.axs) have been created for testing.

4. The Duet Sonance_AMP875D_Comm_dr1_0_0 module must be included in the program with a DEFINE_MODULE command. This command starts execution of the module and passes in the following key information: the device ID of the amplifer to be controlled, and the virtual device ID for communicating to the main program.

An example of how to do this is shown below.

DEFINE_DEVICE

dvAmp = 5001:1:0

vdvAmp = 41001:1:0

vdvAmp1 = 41001:2:0

vdvAmp2 = 41001:3:0

vdvAmp3 = 41001:4:0

dvTP = 10001:11:0

DEFINE_CONSTANT

integer NO_BTN = 9999

dev vdvAmpArray[] =

{

vdvAmp,

vdvAmp1,

vdvAmp2,

vdvAmp3

}

#include 'AmplifierComponent.axi'

#include 'ModuleComponent.axi'

#include 'PowerComponent.axi'

#include 'VolumeComponent.axi'

define_module 'AmplifierComponent' mAmpCmp1(vdvAmpArray, dvTP, nAmpButtons, nAmpOutputBtns, nAmpFBBtns)

define_module 'ModuleComponent' mMdlCmp1(vdvAmp, dvTP, nModuleButtons, nModuleVTButtons)

define_module 'PowerComponent' mPwrCmp1(vdvAmpArray, dvTP, nPowerButtons, nPowerOutputBtns, nPowerFBBtns)

define_module 'VolumeComponent' mVolCmp1(vdvAmpArray,

 dvTP,

 nVolBtns,

 nVolLevels,

 nVolOutBtns,

 nVolPresetBtns,

 nVolLvlStore,

 nVolPsetStore,

 nVolFBBtns)

define_module 'Sonance_AMP875D_Comm_dr1_0_0' mAmpDev1(vdvAmp, dvAmp)

Upon initialization the AMX Comm module will communicate with the amplifier and information will be exchanged.

Port Mapping

This module uses multiple virtual devices in order distinguish events for one zone from another.

	Virtual Device
	Channels
	Levels
	Control
	Feedback

	41001:1:0 – Zone 1
	All Channels
	All Levels
	All Control Cmds
	All Feedback Cmds

	41001:2:0 – Zone 2
	All Channels except 251,252
	All Levels
	None
	None

	41001:3:0 – Zone 3
	All Channels except 251,252
	All Levels
	None
	None

	41001:4:0 – Zone 4
	All Channels except 251,252
	All Levels
	None
	None

Table 1 - Port Mapping

Channels

The UI module controls the Amplifier via channel events (NetLinx commands pulse, on, and off) sent to the COMM module. The channels supported by the COMM module are listed below. These channels are associated with the virtual device(s) and are independent of the channels associated with the touch panel device.

	Channel
	Description

	9
	PULSE: Cycle Power

	24
	ON: Ramp Volume Up – used for feedback also

OFF: Stop Ramping

	25
	ON: Ramp Volume Down – use for feedback also

OFF: Stop Ramping

	26
	PULSE: Cycle Volume Mute

	27
	PULSE: Set Power On

	28
	PULSE: Set Power Off

	199
	ON: Set Volume Mute On – used for feedback also

OFF: Set Volume Mute Off

	251
	ON: Device is Online – used for feedback only

OFF: Device is not Online

	252
	ON: Data is Initialized – use for feedback only

OFF: Data is not Initialized

	255
	ON: Set power on – used for feedback also

OFF: Set power off

	*301
	ON: BBE Signal Processing On – used for feedback also

OFF: BBE Signal Processing Off

	*302
	ON: BBE HI Frequency Boost On – used for feedback also

OFF: BBE HI Frequency Boost Off

	*303
	ON: BBE LO Frequency Boost On – used for feedback also

OFF: BBE LO Frequency Boost Off

Table 2 - Virtual Device Channel Events

Levels

The UI module controls the Amplifier via level events (NetLinx command send_level) sent to the COMM module. The levels supported by the COMM module are listed below. These levels are associated with the virtual device(s) and are independent of the levels associated with the touch panel device.

	Level
	Description

	1
	Volume Level (range 0…255)

Table 3 - Virtual Device Level Events

Command Control

The UI module controls the Amplifier via command events (NetLinx command send_command) sent to the COMM module. The commands supported by the COMM module are listed below.

Note: An ‘*’ indicates an extension to the standard API.

	Command
	Description

	?DEBUG
	Request the state of the debug feature.

?DEBUG

	DEBUG-<value>
	Set the state of debugging messages in the UI module and the Comm. module.

Note: See Programming Notes section.

<value> : 1 = set only error messages on

 2 = set error and warning messages on

 3 = set error, warning & info messages on

 4 = set all messages on

DEBUG-1

	PASSBACK-<state>
	Enable or disable response reporting from the device. When enabled device responses will be sent as strings to the virtual device.
Note: By default, this is set to off at startup.

<state> : 0 = Off (default)

 1 = On

PASSBACK-0

	PASSTHRU-<string>
	Allows user the capability of sending commands directly to whatever unit is attached with minimal processing by the Duet module. User must be aware of the protocol implemented by the unit to use this command. This gives the user access to features that may not be directly supported by the module. For more information, see the “Adding Functions to Modules” section below.

<string> : string to send to unit

PASSTHRU-:TP? (Temperature)

	REINIT
	Re-initializes the communication link and data.

Note: This command deletes any messages waiting to go out to the device.

REINIT

	?VERSION
	Query for the current version number of the Duet module.

?VERSION

Table 4 – Send Command Definitions
Command Feedback

The COMM module provides feedback to the User Interface module for Amplifier changes via command events. The commands supported are listed below.

PLEASE NOTE: Feedback is only provided when there is a state change. If no state change resulted from the command sent in, then no feedback will be returned.

	Command
	Description

	DEBUG-<value>
	Returns the state of debugging messages in the UI module and the Comm. module.

<value> : 1 = set only error messages on

 2 = set error and warning messages on

 3 = set error, warning and info messages on

 4 = set all messages on

DEBUG-1

	VERSION-<version>
	Reports the version number of the module.

<version> : x.y.z = module version number

VERSION-1.0.0

Table 5 - Command Feedback Definitions

Device Notes

· The device will not respond to most of the commands if the Power is off.

Programming Notes

· This module de-queues commands to the camera at a regular interval of 200 milliseconds.

· At startup and when the ‘REINIT’ command is used, all values are set to default values. If these values are not initialized during the startup or re-initialization sequence, then they remain set to their default values and may be returned if a query/get command is sent. The default value for all integers is –2147483648, which is the smallest valid integer available. Boolean values default to 0/false.

Adding Functions to Modules

Commands to the device

This module supplies a mechanism to allow additional device features to be added to software using the module. This is the ‘PASSTHRU-‘ command, which allows protocol strings to be passed through the module. The device-specific protocol must be known in order to use this feature.

As an example, suppose that a module for a projector has not implemented the 'white balance adjustment' feature. The command that the projector protocol requires is 03H, 10H, 05H, 14H, followed by a checksum. The documentation for the ‘PASSTHRU-‘ command specifies that the module will automatically generate the checksum. In this case, the following string should be sent from the UI code to implement 'white balance adjustment'.

send_command vdvDevice, "'PASSTHRU-',$03,$10,$05,$14"

The reason to use ‘PASSTHRU-‘ instead of sending a protocol string directly to the device port is that the device may require command queuing, calculation of checksums, or other internal processing, which would not be done if the string was sent directly. Because of this, it is best to filter all communication TO the device through the module. (The module documentation will indicate any processing that will be automatically done to the ‘PASSTHRU-‘ command like checksum calculation.)

Virtual

Device

SNAPI

NetLinx

UI Module

Duet

COMM Module

Sonance AMP 875D

AMX (3000 Research Drive (Richardson, TX (75082

469.624.8000 (800.222.0193 (469.624.7153 (fax)

